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Abstract The current NCEP operational four-dimensional ensemble-variational data assimilation system
uses a control forecast at T1534 resolution coupled with an 80 member ensemble at T574 resolution. Given
an increase in computing resources, and assuming the control forecast resolution is fixed, would it be better
to increase the ensemble size and keep the ensemble resolution the same, or increase the ensemble
resolution and keep the ensemble size the same? To answer this question, experiments are conducted at
reduced resolutions. Two sets of experiments are conducted which both use approximately four times more
computational resources than the control experiment that uses a control forecast at T670 and an 80
member ensemble at T254. One increases the ensemble size to 320 but keeps the ensemble resolution at
T254; and the other increases the ensemble resolution to T670 but retains an 80 ensemble size. When
ensemble size increases to 320, turning off the static component of the background-error covariance does
not degrade performance. When the data assimilation parameters are tuned for optimal performance,
increasing either ensemble size or ensemble resolution can improve the forecast performance. Increasing
ensemble resolution is slightly, but significantly better than increasing ensemble size for these experiments,
particularly when considering errors at smaller scales. Much of the benefit of increasing ensemble resolution
comes about by eliminating the need for a deterministic control forecast and running all of the background
forecasts at the same resolution. In this ‘‘single-resolution’’ mode, the control forecast is replaced by an
ensemble average, which reduces small-scale errors significantly.

1. Introduction

For an ensemble-based data assimilation and forecasting system, there is always a tension between increas-
ing ensemble size and resolution—both can lead to improved performance with increased computational
cost. Due to the multiscale nature of the dynamics, increasing model resolution can resolve new phenome-
na and account for nonlinear interactions of these phenomena with large-scale motions [e.g., Navarra et al.,
2010]. Pellerin et al. [2003] found that increasing ensemble resolution has a positive impact on the forecast
skill for the ensemble forecasts at the Canadian Meteorological Centre (CMC). By increasing the horizontal
resolution of the European Centre for Medium-Range Weather Forecasts (ECMWF) ensemble prediction sys-
tem (EPS) from a spectral triangular truncation T95 to T799, Buizza [2010] found a strong impact on forecast
skill at short lead times, a weaker impact in the medium range, and an undetectable impact at long leads.

Buizza and Palmer [1998] found that increasing ensemble size from 10 to 30 in the ECMWF EPS with spectral
triangular truncation T63 and 19 vertical levels (T63L19) had a significant positive impact on ensemble
mean forecast skill. Doubling the ensemble size of the UK Met Office Global and Regional EPS implemented
at the Korean Meteorological Administration (KMA) with resolution T320L50 resulted in a slight positive
impact on forecast skill [Kay et al., 2013], especially for longer forecast lead times.

The trade-off between ensemble size and ensemble resolution has been investigated at several different
operational centers. Using the ECMWF EPS, Mullen and Buizza [2002] showed that given approximately the
same computational cost, and using a probabilistic measure of precipitation forecast, increasing ensemble
size was more valuable than increasing ensemble resolution. Ma et al. [2012] used the National Centers for
Environmental Prediction (NCEP) Global Ensemble Forecast System (GEFS) and concluded that increasing
ensemble resolution is more (less) beneficial than increasing ensemble size for a short (long) forecast
ranges. Based on the performance of the U.S. Navy Global Atmospheric EPS, Reynolds et al. [2011]
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demonstrated that higher ensemble resolution with smaller ensemble size produced significantly smaller
tropical cyclone track errors and slightly smaller tropical wind errors than larger ensemble size with lower
ensemble resolution. These studies indicate that the trade-off between ensemble size and resolution may
depend on the forecast skill metric, as well as other factors such as the range of ensemble sizes and resolu-
tions used.

Ensemble Kalman filter (EnKF) data assimilation systems use an ensemble forecast to provide a flow-
dependent background-error covariance (B) that determines the analysis increment given observations.
Either increasing the ensemble size or ensemble resolution can result in a more accurate estimate of B.
Hamrud et al. [2015a] showed that increasing ensemble size and increasing ensemble resolution both had a
positive impact on forecasts initialized from an EnKF system. Similar results are obtained by Houtekamer
et al. [2014], however they found that increasing resolution had a larger impact than increasing ensemble
size, but this came at a greater computational cost.

The current NCEP operational hybrid four-dimensional ensemble-variational (4DEnVar) data assimilation sys-
tem uses a dual-resolution configuration with a single control forecast at T1534 and an 80 member ensem-
ble at T574 resolution. The operational hybrid 4DEnVAR system [Wang and Lei, 2014; Kleist and Ide, 2015b]
uses a combination of time-invariant static B and flow-dependent B estimated from the ensemble that is
updated using an EnKF [Whitaker and Hamill, 2002]. The EnKF analysis ensemble mean is then replaced by
the 4DEnVar analysis. Experience has shown that the most important configuration parameters for the oper-
ational data assimilation system include the weight given to the static B component, the covariance locali-
zation length scales, the ensemble size, and the spatial resolution of the ensemble. There have been no
studies that we are aware of that examine relative benefits of increasing ensemble size versus resolution in
the context of a dual-resolution hybrid 4DEnVar system of the kind now operational at NCEP. Hence, this is
our primary focus.

This paper is organized as follows. Section 2 describes NCEP hybrid 4DEnVAR configuration and experimen-
tal design. Section 3 presents an analysis of the relative benefits of increasing either the ensemble size or
ensemble resolution, including the sensitivities to the weight of static B and covariance localization length
scales. The findings of this study are summarized in section 4.

2. Experimental Design

The current NCEP operational system uses a dual-resolution configuration with a single control forecast at
T1534 and an 80 member ensemble at T574 resolution, with 64 vertical levels. Our control experiment
(T254T670) is the same as the operational configuration but at a reduced resolution (T670 for the control
forecast and T254 for the ensemble). Given approximately four times more computations than the control
experiment T254T670, two sets of experiments are designed. One set of experiments (T254T670Ens320) is
the same as the control experiment T254T670, but increasing ensemble size from 80 to 320. The second set
of experiments (T670T670) is the same as the control experiment T254T670, but increasing the ensemble
resolution from T254 to T670. Note that since the forecast model uses an unconditionally stable semi-
Lagrangian time integration scheme, the time step remains the same when the ensemble resolution is
increased.

In the dual-resolution experiments, the ensemble priors are first recentered around the control forecast at
the beginning of each data assimilation cycle. The control and ensemble analyses are then computed sepa-
rately at the beginning, middle, and end of the data assimilation window, using all observations in the win-
dow. The hybrid 4DEnVar algorithm [Kleist and Ide, 2015b] produces the control analysis, and the EnKF
[Whitaker and Hamill, 2002; NCAR Developmental Testbed Center, 2015] produces the ensemble analyses. The
EnKF analyses are then recentered around the hybrid 4DEnVAR analysis. For both the control and ensem-
bles, the four-dimensional increment analysis update (4DIAU) [Lei and Whitaker, 2016] is performed to incor-
porate the 4-D analysis increments during the model forecast. There is no digital filter applied, and
experiments by default are performed without the tangent-linear normal-mode constraint (TLNMC) [Kleist
et al., 2009; Kleist and Ide, 2015b]. The control and ensemble analyses are at last advanced to the end of
next data assimilation window. The single-resolution experiments (T670T670) use the same procedure as
the dual-resolution experiments, except that there is no separate control forecast—instead the ensemble
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mean prior is used as background for the hybrid 4DEnVar analysis. Thus there is no need for recentering of
the forecast ensembles, although the EnKF analyses are still recentered around the hybrid 4DEnVar analysis.

All experiments assimilate all of the observations used operationally in the NCEP global data assimilation
system (GDAS) every 6 h, including conventional in situ observations, and remotely sensed satellite radian-
ces, cloud-motion vectors, and global positioning system radio-occultation measurements. The observation
error variances are the same as that used in the NCEP GDAS. To compute the observation prior ensemble
Hxb (needed by the EnKF) where H is the observation forward operator and xb is the model ensemble back-
ground or prior, the ‘‘observer’’ portion of the Grid-point Statistical Interpolation system (GSI) [Wu et al.,
2002; Kleist et al., 2009] is run for each ensemble member and the ensemble mean separately.

Hybrid 4DEnVAR is an extension of 3DEnVAR [Wang et al., 2013] that utilizes 4-D ensemble perturbations
but a time-invariant static B throughout the assimilation window. The amplitude of the time-invariant static
B in the 4DEnVAR is controlled by a constant parameter ß0. The amplitude of the flow-dependent, ensemble
estimated part of B is then 1 – ß0. Covariance localization is used to remove spurious long-range covariance
arising from sampling errors. The localization is applied separately in the horizontal and vertical, and the
same horizontal and vertical localization length scales are used in both 4DEnVAR and the EnKF. The localiza-
tion table utilized in NCEP operations has level-dependent horizontal localization scale (hl) and a constant
vertical localization scale (vl). The level-dependent horizontal localization scale follows Figure 3 in Kleist and
Ide [2015a], with a value hl1 below 300 hPa, hl2 between 56 and 14 hPa, and hl3 between 5 hPa and the top
of the model, with values varying linearly in the vertical in the transition zones. The localization scale hl2
and hl3 are fixed to 1000 and 1300 km as in Kleist and Ide [2015a], while a range of values for hl1 is examined
in our experiments. Multiplicative covariance inflation that relaxes posterior ensemble spread back to the
prior ensemble spread (relaxation-to-prior spread) [Whitaker and Hamill 2012] is used with the relaxation
coefficient set to 0.85. Stochastic parameterizations [Palmer et al., 2009] are used to represent model uncer-
tainty within the ensemble forecast step, and no additive inflation is applied.

All experiments are run from 00 UTC 1 April 2014 to 00 UTC 24 April 2014. The first 4 days of assimilation is
discarded to avoid transient effects, and the remaining data are used for verification. We use the root-mean-
square (RMS) observation increments, which are the RMS differences between the observations priors (Hxb)
and all in situ observations, to evaluate the experiments in observation space. To evaluate the experiments in
model space, forecasts from each experiment are postprocessed to 37 pressure levels between 1000 and 100
hPa on a 18 3 18 grid, and then are compared to ECMWF 18 3 18 gridded analyses. The RMS differences
between the gridded forecasts and analyses are computed. The RMS differences among the experiments are
converged in approximately 5 days. A spherical harmonics transform is applied to the latitude-longitude tem-
perature difference, and the resulting 2-D wavenumber decomposition is summed over spherical harmonics
with the same total spherical wavenumber to produce the 1-D spectrum of temperature error. To compute
the error kinetic energy spectrum, a similar procedure is applied for the vector wind differences

uEC2uf
� �2

1 vEC2vf
� �2

h i
=2, where superscript EC denotes ECMWF analyses and f denotes the 6 h prior.

3. Results

3.1. Sensitivities to Data Assimilation Parameters
The RMS observation increments are used to tune the data assimilation parameters including ß0, hl1, and vl
for the three sets of experiments, and the best values of the parameters are shown in Table 1. When the

ensemble size increases from 80 to 320, there is
little sensitivity to changes in the horizontal and
vertical localization scales, thus experiment
T254T670Ens320 utilizes the same values of hl1
and vl as experiment T254T670. Although a
broader localization scale is expected with
increasing ensemble size, the sensitivity to the
localization scale is small when the localization
scale is approaching its optimal value [Lei et al.,
2015], thus only very slight sensitivity is found for
increasing ensemble size from 80 to 320. When

Table 1. The Optimal Values of the Weight of Static
Background-Error Covariance (ß0), Horizontal Localization Scale
Below 300 hPa (hl1) and Vertical Localization Scale (vl) for the Three
Sets of Experimenta

Experiment
Name ß0 hl1 (km)

vl (Scale
Height)

T254T670 0.125 350 0.5
T254T670Ens320 0 350 0.5
T670T670 0.125 263 0.375

aThe horizontal and vertical localization scales are e-folding
scales.
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the ensemble resolution increases from
T254 to T670 (experiment T670T670),
slightly smaller horizontal and vertical
localization scales are optimal.

For the control experiment T254T670,
the inclusion of a small contribution of
static B (ß0 5 0.125) is beneficial, which
is consistent with the results from Kleist
and Ide [2015b]. To diagnose the role
of the static B component, the error
kinetic energy is computed using dif-
ferences between the control forecasts
and ECWMF analyses for different val-
ues of ß0, and the power spectra are
analyzed at pressure levels of 1000,
700, 500, and 200 hPa. Generally con-
sistent results are obtained for all pres-
sure levels, so only the error kinetic
energy power spectrum at 700 hPa
is shown in Figure 1. Comparing to no
static B (ß0 5 0), the inclusion of a small
contribution of static B (ß0 5 0.125)
decreases the kinetic energy error at
nearly all scales except the largest scales
with wavenumbers smaller than 9. This
indicates that the flow-dependent B
from the ensemble is able to well repre-
sent the larger-scale error statistics, but
the ensemble estimated B suffers from
sampling errors at small scales even with
covariance localization. Thus from this
point of view, the static B component
can play a role similar to localization and
improve the representation of error sta-
tistics at small scales. When the weight
of static B is further increased
(ß0 5 0.25), the error kinetic energy starts
to increase at medium scales. Therefore,
the optimal amplitude of the static B
component in hybrid 4DEnVAR results
from a balance between sampling error
in the estimation of flow-dependent por-
tion of the background-error covariance
and the errors in the static covariance
estimate at small scales.

When the ensemble size increases
from 80 to 320, turning off the static B
(ß0 5 0) has no negative impact on
observation increments. Figure 1b
shows that with 320 members, includ-
ing a small amount of static B

(ß0 5 0.125) does not reduce the error kinetic energy at small scales as it did with 80 members. When ß0 is
increased to 0.25, the error kinetic energy error increases at small scales. Therefore, the flow-dependent,

(a)

(b)

(c)

Figure 1. The power spectra of error kinetic energy at 700 hPa for experiments (a)
T254T670, (b) T254670Ens320, and (c) T670T670 with different static background-
error covariance amplitudes. The error kinetic energy is computed using the vec-
tor wind differences between 6 h forecasts and ECMWF analyses.
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ensemble estimated B using 320 members with horizontal and vertical localization scales can represent the
error statistics at all scales as well or better than the static estimate.

When the ensemble resolution increases from T254 to T670, including a small contribution of static B
(ß0 5 0.125) produces very slightly smaller RMS observation increments than with no static B contribution
(ß0 5 0), and produces slightly smaller error kinetic energy values for wavenumbers between 10 and 17 (not
shown). Further increasing the weight of static B (ß0 5 0.25) leads to increased error kinetic energy for

(a) (b) (c)

Figure 2. Globally and temporally averaged RMS observation increments for (a) vector wind, (b) temperature, and (c) normalized specific humidity (specific humidity divided by satura-
tion specific humidity) for all in situ observations.
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Figure 3. Globally and temporally averaged forecast error differences between the control experiment T254T670 and the other two experi-
ments T254T670Ens320 and T670T670 for (a) vector wind and (b) temperature at 5 day forecast lead time. The error is computed by verify-
ing the 120 h forecasts from each experiment against the ECMWF analysis. Negative (positive) values mean the control experiment has
larger (smaller) forecasts errors than the compared experiment.
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wavenumbers larger than 10.
With increased ensemble reso-
lution, the error statistics at
smaller scales can be better
resolved, and thus the impact of
including a small contribution
of static B becomes smaller, but
including a small contribution
of static B (ß0 5 0.125) is still
beneficial to the experiment
with resolution T670.

3.2. Evaluating the Trade-Off
Between Ensemble Size and
Resolution
The globally and temporally
averaged RMS observation
increment profiles for the three
sets of experiments with the
tuned data assimilation parame-
ters given in Table 1 are shown
in Figure 2. Compared to the
control experiment T254T670,
experiments T254T670Ens320
and T670T670 have reduced
wind and normalized specific
humidity (specific humidity
divided by saturation specific
humidity) errors in the whole
column except near the surface,
and slightly reduced tempera-
ture errors between 825 and
325 hPa. Experiment T670T670
produces smaller wind and
normalized specific humidity
errors than T254T670Ens320,
and similar temperature errors.

Similar results are obtained when validating the forecasts in model space relative to ECMWF analyses (not
shown).

To examine whether the differences between the three experiments are representative of longer-lead fore-
casts, a single 5 day forecast is launched from each control analysis during the verification period. The glob-
ally and temporally averaged RMS error profiles (relative to ECMWF analyses) are computed for each of the
three experiments. The forecast error differences at 5 day lead time are shown in Figure 3. Positive (nega-
tive) values indicate that the control experiment T254T670 has larger (smaller) RMS forecast error than the
compared experiment. At 5 day lead time, experiments T254T670Ens320 and T670T670 produce smaller
forecast errors of temperature and wind than T254T670, and T670T670 has smaller forecast errors than
T254T670Ens320. Thus the observation increments differences between the experiments shown in Figure 2
is consistent with differences in forecast errors computed from longer-lead forecasts, except near the sur-
face that is because results in Figure 2 is verified against the in situ observations while results in Figure 3 is
verified relative to the ECMWF-gridded analyses.

Figure 4 shows the power spectra of error kinetic energy and temperature errors at 700 hPa computed
from 6 h forecasts for all the three experiments. The error kinetic energy is reduced at nearly all scales by
increasing either ensemble size or ensemble resolution, although the impact of increasing ensemble

(a)

(b)

Figure 4. The power spectra of (a) error kinetic energy and (b) temperature forecast error
at 700 hPa for the three experiments with tuned data assimilation parameters given in
Table 1. The error kinetic energy and temperature forecast errors are computed using dif-
ferences between 6 h forecasts and ECMWF analyses.

Journal of Advances in Modeling Earth Systems 10.1002/2016MS000864

LEI AND WHITAKER TRADE-OFF OF ENSEMBLE SIZE AND RESOLUTION 786



resolution is larger for wavenumbers greater than about 20. Similar, though somewhat smaller, sensitivities
are seen in power spectra of temperature errors.

3.3. Impact of the Tangent-Linear Normal Mode Constraint
As a dynamic constraint, the TLNMC [Kleist et al., 2009; Kleist and Ide, 2015b] applies a balance operator on
the analysis increment, in order to mitigate imbalances that can be introduced by the analysis. The impact
of the TLNMC on ensemble size and ensemble resolution sensitivities is examined here. Given the tuned
data assimilation parameters shown in Table 1, the three sets of experiments are repeated with the TLNMC
turned on.

The globally and temporally averaged RMS observation increment profiles for the three experiments with
TLNMC are shown in Figure 5, which are similar to Figure 2 but the differences between the control experi-
ment T254T670 and the other two experiments become smaller. Similarly, 5 day forecast error differences
are similar with and without the TLNMC activated (figure not shown), although the magnitude of differ-
ences decreases when the TLNMC is on. Figure 6 shows the power spectra of temperature errors and error
kinetic energy at 700 hPa for the three experiments with TLNMC, for comparison with Figure 4. The general
conclusion still holds: increasing either ensemble size or ensemble resolution in hybrid 4DEnVar improves
forecast skill, but increasing ensemble resolution has slightly more impact for a comparable increase in
computational cost.

The comparison of Figures 2 and 5 and Figures 4 and 6 indicates that the application of the TLNMC signifi-
cantly reduces the error of the control experiment T254T670 at nearly all levels and scales, but only has very
slight impact on the experiments T254T670Ens320 and T670T670. We would expect that the impact of
TLNMC be reduced with increasing ensemble size (T254T670Ens320), since the imbalance introduced by
localization decreases. To examine why the TLNMC has limited impact on experiment T670T670, two single-
resolution experiments at T254, with and without the TLNMC, are performed, which confirm that the TLNMC
has very little impact on single-resolution configurations of hybrid 4DEnVar that do not include a high-
resolution control forecast. A second dual-resolution T254T670 experiment was then performed in which the
recentering of the EnKF ensemble around the control analysis was turned off, thus there is no feedback from
the control to the ensemble. This experiment performs better than experiment T254T670 without the TLNMC,
and is only slightly worse than experiment T254T670 with the TLNMC (not shown). This indicates that much of
the impact of the TLNMC in the dual-resolution configuration comes from mitigating the imbalances introduced
in the EnKF ensemble priors by the recentering procedure. This is also consistent with the fact that the impact
of the TLNMC is relatively small in the single-resolution configuration.

(a) (b) (c)

Figure 5. Same as Figure 2, except that the TLNMC is applied in the three experiments.
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3.4. Impact of Ensemble
Averaging
Unlike experiments T254T670 and
T254T670Ens320, the single-resolution
experiment T670T670 does not uti-
lize a deterministic control forecast
but instead utilizes the ensemble
mean prior as background for the
hybrid 4DEnVAR analysis. Thus,
experiment T670T670 may also
benefit from ensemble averaging.
To examine the impact of ensem-
ble averaging, two dual-resolution
experiments T574T670, with and
without the TLNMC, are performed.

The globally and temporally averaged
RMS observation increment profiles
for the experiment T574T670 without
TLNMC are shown in Figure 2. Experi-
ment T574T670 produces errors
comparable to T254T670Ens320
but larger than T670T670, especially
for wind and specific humidity. Con-
sistent with the RMS observation
increments, experiment T574T670
has similar power spectra of tem-
perature errors and error kinetic
energy to T254T670Ens320 (Figure 4),
except that T574T670 has larger
errors than T254T560Ens320 for
wavenumbers between 25 and 50.
Similar results, though somewhat
smaller differences, are obtained
when TLNMC is applied (figure not

shown). Therefore, we conclude that ensemble averaging in the single-resolution experiment T670T670
reduces errors significantly, particularly at smaller scales.

4. Conclusions

The current NCEP operational system uses a T1534 resolution control forecast and a T574 80 member
ensemble. Given an increase in computer resources and assuming the control resolution remains fixed, the
trade-off between increasing either ensemble size or ensemble resolution is investigated in this study. The
control experiment (T254T670) is the same as the current operational system except at a reduced resolu-
tion. With approximately four times more computation cost than the control experiment, two experiments
are conducted, one (T254T670Ens320) increases the ensemble size but keeps the ensemble resolution the
same and the other (T670T670) increases the ensemble resolution but keeps the ensemble size the same.

There are slight sensitivities for varying the horizontal and vertical localization scales with increasing either
ensemble size or ensemble resolution. While experiment T670T670 still benefits from an inclusion of a small
contribution of static B, turning off the static B has no impact for the experiment with 320 members. The
error power spectra show that the static B can play a role similar to localization and improve the representa-
tion of error statistics at small scales for an 80 member ensemble. The impact of static B decreases with
increasing ensemble size, since the error statistics at all scales can be more accurately represented. The

(a)

(b)

Figure 6. Same as Figure 4, except that the TLNMC is applied in the three
experiments.
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impact of static B is also reduced with increasing ensemble resolution due to the improved representation
of error statistics at small scales.

With tuned data assimilation parameters, results show that forecast skill can be improved by increasing
either ensemble size or ensemble resolution, and the advantages of increasing either ensemble size or
ensemble resolution persist out to a 5 day forecast lead time. For a comparable computational cost, we find
increasing ensemble resolution is superior to increasing ensemble size, and the extra improvement comes
mainly from reducing errors at smaller scales through ensemble averaging in a single-resolution configura-
tion. These results hold when the tangent-linear normal model constraint is applied, although the differ-
ences among the experiments become smaller, primarily because the TLNMC improves the dual-resolution
control experiment by mitigating the impacts of imbalances associated with small ensemble size and
ensemble recentering.

The question remains whether these results can be extrapolated to the higher resolutions now run in NCEP
operations (T574 for the ensemble and T1534 for the control forecast). Preliminary experiments using the
NCEP operational resolutions but without tuning the optimal localization scales and weight of static B show
consistent results with increasing ensemble size (R. Mahajan, personal communications, 2016), and work is
ongoing to fully answer this question.
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